Defined simply, ethics are principles of behavior based on ideas of right and wrong. Ethical principles often focus on ideas such as fairness, respect, responsibility, integrity, quality, reliability, transparency, and trust. Data handling ethics are concerned with how to procure, store, manage, use, and dispose of data in ways that are aligned with ethical principles. Handling data in an ethical manner is necessary to the long-term success of any organization that wants to get value from its data. Unethical #datahandling can result in the loss of reputation and customers, because it puts at risk people whose data is exposed. In some cases, unethical practices are also illegal. Ultimately, for #datamanagement professionals and the organizations for which they work, data ethics are a matter of social responsibility.
The ethics of data handling are complex, but they center on several core concepts:
-
Impact on people: Because data represents characteristics of individuals and is used to make decisions that affect people's lives, there is an imperative to manage its quality and reliability.
-
Potential for misuse: Misusing data can negatively affect people and organizations, so there is an ethical imperative to prevent the misuse of data.
-
Economic value of data: Data has economic value. Ethics of #dataownership should determine how that value can be accessed and by whom.
Organizations protect data based largely on lows and regulatory requirements. Nevertheless, because data represents people (customers, employees, patients, vendors, etc.), data management professionals should recognize that there are ethical (as well as legal) reasons to protect data and ensure it is not misused. Even data that does not directly represent individuals can still be used to make decisions that affect people's lives.
There is an ethical imperative not only to protect data, but also manage its quality. People making decisions, as well as those impacted by decisions, expect data to be complete and accurate. From both a business and a technical perspective, data management professionals have an ethical responsibility to manage data in a way that reduces risk that it may misrepresent, be misused, or be misunderstood. This responsibility extends across the data lifecycle, from creation to destruction of data.
Unfortunately, many organizations fail to recognize and respond to the ethical obligations inherent in data management. They may adopt a traditional technical perspective and profess not to understand the data; or they assume that if they follow the letter of the law, they have no risk related to data handling. This is a dangerous assumption.
The data environment is evolving rapidly. Organizations are using data in ways they would not have imagined even a few years ago. While laws codify some ethical principles, legislation cannot keep up with the risks associated with evolution of the data environment. Organizations must recognize and respond to their ethical obligation to protect data entrusted to them by fostering and sustaining a culture that values the ethical handling of information.